graviti
产品服务
解决方案
知识库
公开数据集
关于我们
Color Fashion
许可协议: Unknown

Overview

In this paper we address the problem of automatically parsing the fashion images with weak supervision from the user-generated color-category tags such as “red jeans” and “white T-shirt”. This problem is very challenging due to the large diversity of fashion items and the absence of pixel-level tags, which make the traditional fully supervised algorithms inapplicable. To solve the problem, we propose to combine the human pose estimation module, the MRF-based color and category inference module and the (super)pixel-level category classifier learning module to generate multiple well-performing category classifiers, which can be directly applied to parse the fashion items in the images. Besides, all the training images are parsed with color-category labels and the human poses of the images are estimated during the model learning phase in this work. We also construct a new fashion image dataset called Colorful-Fashion, in which all 2; 682 images are labeled with pixel-level color-category labels. Extensive experiments on this dataset clearly show the effectiveness of the proposed method for the weakly supervised fashion parsing task.

数据概要
数据格式
image,
数据量
--
文件大小
--
| 数据量 -- | 大小 --
Color Fashion
许可协议: Unknown

Overview

In this paper we address the problem of automatically parsing the fashion images with weak supervision from the user-generated color-category tags such as “red jeans” and “white T-shirt”. This problem is very challenging due to the large diversity of fashion items and the absence of pixel-level tags, which make the traditional fully supervised algorithms inapplicable. To solve the problem, we propose to combine the human pose estimation module, the MRF-based color and category inference module and the (super)pixel-level category classifier learning module to generate multiple well-performing category classifiers, which can be directly applied to parse the fashion items in the images. Besides, all the training images are parsed with color-category labels and the human poses of the images are estimated during the model learning phase in this work. We also construct a new fashion image dataset called Colorful-Fashion, in which all 2; 682 images are labeled with pixel-level color-category labels. Extensive experiments on this dataset clearly show the effectiveness of the proposed method for the weakly supervised fashion parsing task.

0
立即开始构建AI
graviti
wechat-QR
长按保存识别二维码,关注Graviti公众号

Copyright@Graviti
沪ICP备19019574号
沪公网安备 31011002004865号