graviti
产品服务
解决方案
知识库
公开数据集
关于我们
Freesound Audio Tagging 2019 - Mel128
2D Classification
许可协议: CC-BY-SA 4.0

Overview

Context

Freesound Audio Tagging 2019 Competition offers compressed data as .wav files (curated, noisy and test).
This dataset proposes melspectrogram features as in numpy format (.npy).

Content

Extracted melspectrogram features using Librosa with the following parameters:

  • sr = 44100
  • n_mels = 128
  • n_fft = 20*n_mels
  • hop_length = 347
  • fmin=20
  • fmax=sr//2

Acknowledgements

Freesound Audio Tagging 2019 Dataset
Kaggle Notebook - Feature extraction

数据概要
数据格式
image,
数据量
28.145K
文件大小
2.48GB
发布方
fdebrain
| 数据量 28.145K | 大小 2.48GB
Freesound Audio Tagging 2019 - Mel128
2D Classification
许可协议: CC-BY-SA 4.0

Overview

Context

Freesound Audio Tagging 2019 Competition offers compressed data as .wav files (curated, noisy and test).
This dataset proposes melspectrogram features as in numpy format (.npy).

Content

Extracted melspectrogram features using Librosa with the following parameters:

  • sr = 44100
  • n_mels = 128
  • n_fft = 20*n_mels
  • hop_length = 347
  • fmin=20
  • fmax=sr//2

Acknowledgements

Freesound Audio Tagging 2019 Dataset
Kaggle Notebook - Feature extraction

0
立即开始构建AI
graviti
wechat-QR
长按保存识别二维码,关注Graviti公众号

Copyright@Graviti
沪ICP备19019574号
沪公网安备 31011002004865号