graviti
产品服务
解决方案
知识库
公开数据集
关于我们
KITTI Vision Benchmark
Autonomous Driving
|...
许可协议: CC-BY-SA

Overview

We take advantage of our autonomous driving platform Annieway to develop novel challenging real-world computer vision benchmarks. Our tasks of interest are: stereo, optical flow, visual odometry, 3D object detection and 3D tracking. For this purpose, we equipped a standard station wagon with two high-resolution color and grayscale video cameras. Accurate ground truth is provided by a Velodyne laser scanner and a GPS localization system. Our datsets are captured by driving around the mid-size city of Karlsruhe, in rural areas and on highways. Up to 15 cars and 30 pedestrians are visible per image. Besides providing all data in raw format, we extract benchmarks for each task. For each of our benchmarks, we also provide an evaluation metric and this evaluation website. Preliminary experiments show that methods ranking high on established benchmarks such as Middlebury perform below average when being moved outside the laboratory to the real world. Our goal is to reduce this bias and complement existing benchmarks by providing real-world benchmarks with novel difficulties to the community.

数据概要
数据格式
image,
数据量
--
文件大小
--
发布方
Andreas Geiger and Philip Lenz and Raquel Urtasun
| 数据量 -- | 大小 --
KITTI Vision Benchmark
Autonomous Driving
许可协议: CC-BY-SA

Overview

We take advantage of our autonomous driving platform Annieway to develop novel challenging real-world computer vision benchmarks. Our tasks of interest are: stereo, optical flow, visual odometry, 3D object detection and 3D tracking. For this purpose, we equipped a standard station wagon with two high-resolution color and grayscale video cameras. Accurate ground truth is provided by a Velodyne laser scanner and a GPS localization system. Our datsets are captured by driving around the mid-size city of Karlsruhe, in rural areas and on highways. Up to 15 cars and 30 pedestrians are visible per image. Besides providing all data in raw format, we extract benchmarks for each task. For each of our benchmarks, we also provide an evaluation metric and this evaluation website. Preliminary experiments show that methods ranking high on established benchmarks such as Middlebury perform below average when being moved outside the laboratory to the real world. Our goal is to reduce this bias and complement existing benchmarks by providing real-world benchmarks with novel difficulties to the community.

0
立即开始构建AI
graviti
wechat-QR
长按保存识别二维码,关注Graviti公众号

Copyright@Graviti
沪ICP备19019574号
沪公网安备 31011002004865号