PandaSet
3D Box
Autonomous Driving
|...
许可协议: Custom

Overview

PandaSet aims to promote and advance research and development in autonomous driving and machine learning.

The first open-source dataset made available for both academic and commercial use, PandaSet combines Hesai’s best-in-class LiDAR sensors with Scale AI’s high-quality data annotation. PandaSet features data collected using a forward-facing LiDAR with image-like resolution (PandarGT) as well as a mechanical spinning LiDAR (Pandar64). The collected data was annotated with a combination of cuboid and segmentation annotation (Scale 3D Sensor Fusion Segmentation).

It features:

  • 48,000 camera images
  • 16,000 LiDAR sweeps
  • +100 scenes of 8s each
  • 28 annotation classes
  • 37 semantic segmentation labels
  • Full sensor suite: 1x mechanical LiDAR, 1x solid-state LiDAR, 6x cameras, On-board GPS/IMU

Data Collection

Complex Driving Scenarios in Urban Environments

For PandaSet we carefully planned routes and selected scenes that would showcase complex urban driving scenarios, including steep hills, construction, dense traffic and pedestrians, and a variety of times of day and lighting conditions in the morning, afternoon, dusk and evening.

PandaSet scenes are selected from 2 routes in Silicon Valley: (1) San Francisco; and (2) El Camino Real from Palo Alto to San Mateo.

Data Annotation

Scale’s data annotation platform combines human work and review with smart tools, statistical confidence checks and machine learning checks to ensure the quality of annotations.

The resulting accuracy is consistently higher than what a human or synthetic labeling approach can achieve independently as measured against seven rigorous quality areas for each annotation.

PandaSet includes 3D Bounding boxes for 28 object classes and a rich set of class attributes related to activity, visibility, location, pose. The dataset also includes Point Cloud Segmentation with 37 semantic labels including for smoke, car exhaust, vegetation, and driveable surface.

License

Custom

数据概要
数据格式
Point Cloud, Image,
数据量
48K
文件大小
41.46GB
发布方
Scale AI, Inc
Trusted by world class companies, Scale delivers high quality training data for AI applications such as self-driving cars, mapping, AR/VR, robotics, and more.
标注方
Scale AI, Inc
Trusted by world class companies, Scale delivers high quality training data for AI applications such as self-driving cars, mapping, AR/VR, robotics, and more
数据集反馈
| 177 | 数据量 48K | 大小 41.46GB
PandaSet
3D Box
Autonomous Driving
许可协议: Custom

Overview

PandaSet aims to promote and advance research and development in autonomous driving and machine learning.

The first open-source dataset made available for both academic and commercial use, PandaSet combines Hesai’s best-in-class LiDAR sensors with Scale AI’s high-quality data annotation. PandaSet features data collected using a forward-facing LiDAR with image-like resolution (PandarGT) as well as a mechanical spinning LiDAR (Pandar64). The collected data was annotated with a combination of cuboid and segmentation annotation (Scale 3D Sensor Fusion Segmentation).

It features:

  • 48,000 camera images
  • 16,000 LiDAR sweeps
  • +100 scenes of 8s each
  • 28 annotation classes
  • 37 semantic segmentation labels
  • Full sensor suite: 1x mechanical LiDAR, 1x solid-state LiDAR, 6x cameras, On-board GPS/IMU

Data Collection

Complex Driving Scenarios in Urban Environments

For PandaSet we carefully planned routes and selected scenes that would showcase complex urban driving scenarios, including steep hills, construction, dense traffic and pedestrians, and a variety of times of day and lighting conditions in the morning, afternoon, dusk and evening.

PandaSet scenes are selected from 2 routes in Silicon Valley: (1) San Francisco; and (2) El Camino Real from Palo Alto to San Mateo.

Data Annotation

Scale’s data annotation platform combines human work and review with smart tools, statistical confidence checks and machine learning checks to ensure the quality of annotations.

The resulting accuracy is consistently higher than what a human or synthetic labeling approach can achieve independently as measured against seven rigorous quality areas for each annotation.

PandaSet includes 3D Bounding boxes for 28 object classes and a rich set of class attributes related to activity, visibility, location, pose. The dataset also includes Point Cloud Segmentation with 37 semantic labels including for smoke, car exhaust, vegetation, and driveable surface.

License

Custom

数据集反馈
0
立即开始构建AI
graviti
wechat-QR
长按保存识别二维码,关注Graviti公众号