graviti
产品服务
解决方案
知识库
公开数据集
关于我们
RGB+D Dataset
许可协议: Research Only

Overview

We introduce an RGB-D scene dataset consisting of more than 200 indoor / outdoor scenes.

This dataset contains synchronized RGB-D frames from both Kinect v2 and Zed stereo camera. For the outdoor scene, we first generate disparity maps using an accurate stereo matching method and convert them using calibration parameters. A per-pixel confidence map of disparity is also provided. Our scenes are captured at various places, e.g., offices, rooms, dormitory, exhibition center, street, road etc., from Yonsei University and Ewha University.

This dataset has been used to train convolutional neural networks in our project [1] and for our papers[2], [3], [4] "High quality 2D-to-multiview contents generation from large-scale RGB-D database", under Grant by the Institute for Information and Communications Technology Promotion(IITP) through the Korean Government(MSIP)(R0115-16-1007).

References:

  1. DIML/CVL RGB-D technical_report](https://dimlrgbd.github.io/downloads/technical_report.pdf) : This material is presented to provide a detailed description about the DIML/CVl RGB-D dataset.
  2. Y. Kim, B. Ham, C. Oh, and K. Sohn, "Structure selective depth super-resolution for RGB-D cameras," IEEE Trnas. on Image Processing, vol.25, no. 11, pp. 5527-38, Nov. 2016. [[Paper]](http://diml.yonsei.ac.kr/DIML_rgbd_dataset/paper/Structure selective depth super-resolution for RGB-D cameras_Y.Kim.pdf) [Project Page]
  3. S. Kim, D. Min, B. Ham, S. Kim and K. Sohn, "Deep Stereo Confidence Prediction for Depth Estimation," IEEE International Conference on Image Processing, Sept. 2017. [[Paper]](http://diml.yonsei.ac.kr/DIML_rgbd_dataset/paper/Deep Stereo Confidence Prediction for Depth Estimation_S.Kim.pdf)[ Code]
  4. Y. Kim, H. Jung, D. Min, and K. Sohn, "Deep Monocular Depth Estimation via Integration of Global and Local Predictions," IEEE Trnas. on Image Processing, vol.27, no. 8, pp. 4131-43, Aug. 2018. [[Paper]](http://diml.yonsei.ac.kr/DIML_rgbd_dataset/paper/Deep Monocular Depth Estimation via Integration of Global and Local Predictions_Y.kim.pdf)[ Project Page]
  5. J. Cho, D. Min, Y. Kim, and K. Sohn, "A Large RGB-D Dataset for Semi-supervised Monocular Depth Estimation," arXiv [Paper]
数据概要
数据格式
image,
数据量
708K
文件大小
--
| 数据量 708K | 大小 --
RGB+D Dataset
许可协议: Research Only

Overview

We introduce an RGB-D scene dataset consisting of more than 200 indoor / outdoor scenes.

This dataset contains synchronized RGB-D frames from both Kinect v2 and Zed stereo camera. For the outdoor scene, we first generate disparity maps using an accurate stereo matching method and convert them using calibration parameters. A per-pixel confidence map of disparity is also provided. Our scenes are captured at various places, e.g., offices, rooms, dormitory, exhibition center, street, road etc., from Yonsei University and Ewha University.

This dataset has been used to train convolutional neural networks in our project [1] and for our papers[2], [3], [4] "High quality 2D-to-multiview contents generation from large-scale RGB-D database", under Grant by the Institute for Information and Communications Technology Promotion(IITP) through the Korean Government(MSIP)(R0115-16-1007).

References:

  1. DIML/CVL RGB-D technical_report](https://dimlrgbd.github.io/downloads/technical_report.pdf) : This material is presented to provide a detailed description about the DIML/CVl RGB-D dataset.
  2. Y. Kim, B. Ham, C. Oh, and K. Sohn, "Structure selective depth super-resolution for RGB-D cameras," IEEE Trnas. on Image Processing, vol.25, no. 11, pp. 5527-38, Nov. 2016. [[Paper]](http://diml.yonsei.ac.kr/DIML_rgbd_dataset/paper/Structure selective depth super-resolution for RGB-D cameras_Y.Kim.pdf) [Project Page]
  3. S. Kim, D. Min, B. Ham, S. Kim and K. Sohn, "Deep Stereo Confidence Prediction for Depth Estimation," IEEE International Conference on Image Processing, Sept. 2017. [[Paper]](http://diml.yonsei.ac.kr/DIML_rgbd_dataset/paper/Deep Stereo Confidence Prediction for Depth Estimation_S.Kim.pdf)[ Code]
  4. Y. Kim, H. Jung, D. Min, and K. Sohn, "Deep Monocular Depth Estimation via Integration of Global and Local Predictions," IEEE Trnas. on Image Processing, vol.27, no. 8, pp. 4131-43, Aug. 2018. [[Paper]](http://diml.yonsei.ac.kr/DIML_rgbd_dataset/paper/Deep Monocular Depth Estimation via Integration of Global and Local Predictions_Y.kim.pdf)[ Project Page]
  5. J. Cho, D. Min, Y. Kim, and K. Sohn, "A Large RGB-D Dataset for Semi-supervised Monocular Depth Estimation," arXiv [Paper]
0
立即开始构建AI
graviti
wechat-QR
长按保存识别二维码,关注Graviti公众号

Copyright@Graviti
沪ICP备19019574号
沪公网安备 31011002004865号