graviti
产品服务
解决方案
知识库
公开数据集
关于我们
avatar
Stanford 2D-3D-Semantics Dataset
许可协议: Unknown

Overview

The 2D-3D-S dataset provides a variety of mutually registered modalities from 2D, 2.5D and 3D domains, with instance-level semantic and geometric annotations. It covers over 6,000 m2 and contains over 70,000 RGB images, along with the corresponding depths, surface normals, semantic annotations, global XYZ images (all in forms of both regular and 360° equirectangular images) as well as camera information. It also includes registered raw and semantically annotated 3D meshes and point clouds. The dataset enables development of joint and cross-modal learning models and potentially unsupervised approaches utilizing the regularities present in large-scale indoor spaces.

In more detail, the dataset is collected in 6 large-scale indoor areas that originate from 3 different buildings of mainly educational and office use. For each area, all modalities are registered in the same reference system, yielding pixel to pixel correspondences among them. In a nutshell, the presented dataset contains a total of 70,496 regular RGB and 1,413 equirectangular RGB images, along with their corresponding depths, surface normals, semantic annotations, global XYZ OpenEXR format and camera metadata. In addition, we provide whole building 3D reconstructions as textured meshes, as well as the corresponding 3D semantic meshes. We also include the colored 3D point cloud data of these areas with the total number of 695,878,620 points, that has been previously presented in the Stanford large-scale 3D Indoor Spaces Dataset (S3DIS).

数据概要
数据格式
image,
数据量
70K
文件大小
--
| 数据量 70K | 大小 --
Stanford 2D-3D-Semantics Dataset
许可协议: Unknown

Overview

The 2D-3D-S dataset provides a variety of mutually registered modalities from 2D, 2.5D and 3D domains, with instance-level semantic and geometric annotations. It covers over 6,000 m2 and contains over 70,000 RGB images, along with the corresponding depths, surface normals, semantic annotations, global XYZ images (all in forms of both regular and 360° equirectangular images) as well as camera information. It also includes registered raw and semantically annotated 3D meshes and point clouds. The dataset enables development of joint and cross-modal learning models and potentially unsupervised approaches utilizing the regularities present in large-scale indoor spaces.

In more detail, the dataset is collected in 6 large-scale indoor areas that originate from 3 different buildings of mainly educational and office use. For each area, all modalities are registered in the same reference system, yielding pixel to pixel correspondences among them. In a nutshell, the presented dataset contains a total of 70,496 regular RGB and 1,413 equirectangular RGB images, along with their corresponding depths, surface normals, semantic annotations, global XYZ OpenEXR format and camera metadata. In addition, we provide whole building 3D reconstructions as textured meshes, as well as the corresponding 3D semantic meshes. We also include the colored 3D point cloud data of these areas with the total number of 695,878,620 points, that has been previously presented in the Stanford large-scale 3D Indoor Spaces Dataset (S3DIS).

0
立即开始构建AI
graviti
wechat-QR
长按保存识别二维码,关注Graviti公众号

Copyright@Graviti
沪ICP备19019574号
沪公网安备 31011002004865号